Observation of Multi-TeV Gamma Rays from MGRO J2019+37 and MGRO J2031+41 with the Tibet Air Shower Array

(The Tibet ASy Collaboration)

1 Department of Physics, Hiroshima University, Hiroshima 036-8561, Japan
2 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
4 Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
5 Department of Physics, Hebei Normal University, Shijiazhuang 050016, China
6 Department of Physics, Shandong University, Jinan 250100, China
7 Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
8 Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
9 Department of Physics, Konan University, Kobe 658-8501, Japan
10 Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
11 Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
12 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
13 School of Information Science and Engineering, Shandong Agriculture University, Tai'an 271018, China
14 Department of Physics, Saitama University, Saitama 338-8570, Japan
15 National Institute of Informatics, Tokyo 101-8430, Japan
16 Sakaushi Gakuin University, Utsunomiya 321-3295, Japan
17 College of Science, China University of Petroleum, Qingdao, 266555, China
18 Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
19 Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
20 Science University of Tokyo, 1-1-1 Kashiwabashi, Shinjuku, Tokyo 162-8666, Japan
21 Physics and Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
22 Physics and Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
23 School of General Education, Shinshu University, Matsumoto 390-8621, Japan
24 ohnishi@icrr.u-tokyo.ac.jp

Abstract: The Tibet III air shower array is located at 4300 m above sea level, Tibet, China. Multi-TeV gamma rays were observed from MGRO J2019+37 and MGRO J2031+41 in the Cygnus region using data taken by the Tibet III air shower array in the period between 1999 and 2010.

Keywords: Gamma rays, Cygnus region, Tibet air shower array

1 Introduction

The Cygnus region contains many known supernova remnants, and has been taken notice as source of high energy gamma rays for many years. We reported ~ 0.1% increase of the CR intensity in the Cygnus region in 2006 [1].

In this paper we will report results on observation of multi-TeV gamma rays from MGRO J2019+37 and MGRO J2031+41 in the Cygnus region using data taken by the Tibet III air shower array in the period between 1999 and 2010.

2 Experiment

The Tibet air shower experiment has been successfully operating at Yangbajing (90.52°E, 30.10°N, 4300 m above sea level) in Tibet, China since 1990. The array, originally constructed in 1990, was gradually upgraded by increasing the number of counters [2, 3]. The Tibet III array, used in this work, was completed in the late fall of 2010. The Tibet III air shower array is located at 4300 m above sea level, Tibet, China.
We compare significance maps of MGRO J2019+37 and MGRO J2031+41 with the Tibet Air Shower Array.

We analyze the air shower data set collected by the Tibet III experiment (b) [5] in Figure 2. It is remarkable that the MGRO J2031+41 between the Tibet III (a) and the Milagro is not inconsistent with the ARGO-YBJ upper limits [7]. And our energy spectrum of MGRO J2019+37 is consistent with the Milagro [6] and is not inconsistent with the ARGO-YBJ [7].

Acknowledgments: The collaborative experiment of the Tibet Air Shower Arrays has been performed under the auspices of the Ministry of Science and Technology of China and the Ministry of Foreign Affairs of Japan. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science in Japan, and by the Grants from the National Natural Science Foundation of China and the Chinese Academy of Sciences.

References

3 Analysis
We analyze the air shower data set collected by the Tibet III array during 2131.6 live days from November 1999 through January 2010. To extract an excess of multi-TeV gamma-ray air shower events coming from the direction of a target source in this analysis, we adopt almost the same event selections and the background estimation method published in our previous work [4]. The modal gamma-ray energy is estimated to be approximately 3 TeV by the Monte Carlo simulation. The search window radius centered at the target source is expressed by $\rho = \frac{E^{\alpha}}{\Sigma \rho_{FT}}$, which is shown to maximize the significance by Monte Carlo study assuming a point-like gamma-ray source, where the size $\Sigma \rho_{FT}$ is defined as the sum of the number of particles per m2 for each FT detector. Therefore, an excess might be underestimated if the target source actually extends beyond our angular resolution size.

4 Results
We compare significance maps of MGRO J2019+37 and MGRO J2031+41 between the Tibet III (a) and the Milagro experiment (b) [5] in Figure 2. It is remarkable that the Tibet III obtains images consistent with those observed in Milagro [6].

Figures 3 and 4 show the differential energy spectra of MGRO J2019+37 and MGRO J2031+41 observed by the Tibet III with the results obtained by the Milagro and the ARGO-YBJ respectively. The differential flux for each is presented in Tables 1 and 2. The energy spectra are fitted by the least χ^2 method assuming $f(E) = \alpha (E/10 \text{ TeV})^\beta$.

\[\frac{dJ}{dE} = (3.41 \pm 0.88) \times 10^{-14} \left(\frac{E}{10 \text{ TeV}} \right)^{-3.13 \pm 0.33} \text{ cm}^{-2} \text{s}^{-1} \text{TeV}^{-1} \]

and

\[\frac{dJ}{dE} = (3.29 \pm 1.11) \times 10^{-14} \left(\frac{E}{10 \text{ TeV}} \right)^{-3.15 \pm 0.50} \text{ cm}^{-2} \text{s}^{-1} \text{TeV}^{-1} \]

in the ranges of 3–40 TeV and 3–20 TeV respectively.

Our energy spectrum of MGRO J2019+37 is consistent with the Milagro [6] and is not inconsistent with the ARGO-YBJ upper limits [7]. And our energy spectrum of MGRO J2031+41 is consistent with the Milagro [6] and the ARGO-YBJ [7].
The ARGO-YBJ reports upper limits \[7\].

J2019+37 observed with the Milagro \[6\] and the Tibet III.

Figure 3

Differential flux \((\text{E}^{-1} \text{s}^{-1} \text{TeV}^{-1})\) of TeV gamma rays from MGRO J2019+37.

Table 1:

<table>
<thead>
<tr>
<th>(\sum \rho_{\text{FT}})</th>
<th>Energy (TeV)</th>
<th>(N_{\text{on}})</th>
<th>(< N_{\text{off}} >)</th>
<th>Significance</th>
<th>Differential Flux ((\text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{1.50} - 10^{1.75})</td>
<td>3.4</td>
<td>2592205</td>
<td>2587022</td>
<td>3.07(\sigma)</td>
<td>((1.11 \pm 0.36) \times 10^{-12})</td>
</tr>
<tr>
<td>(10^{1.75} - 10^{2.00})</td>
<td>5.7</td>
<td>825726</td>
<td>824189</td>
<td>1.61(\sigma)</td>
<td>((1.34 \pm 0.83) \times 10^{-13})</td>
</tr>
<tr>
<td>(10^{2.00} - 10^{2.33})</td>
<td>9.5</td>
<td>247490</td>
<td>246958</td>
<td>2.91(\sigma)</td>
<td>((5.08 \pm 1.75) \times 10^{-14})</td>
</tr>
<tr>
<td>(10^{2.33} - 10^{2.67})</td>
<td>18.3</td>
<td>39126</td>
<td>38899</td>
<td>1.10(\sigma)</td>
<td>((4.05 \pm 3.70) \times 10^{-15})</td>
</tr>
<tr>
<td>(10^{2.67} - 10^{3.00})</td>
<td>40.2</td>
<td>7098</td>
<td>6999</td>
<td>1.12(\sigma)</td>
<td>((4.87 \pm 4.36) \times 10^{-16})</td>
</tr>
</tbody>
</table>

Figure 4

Differential flux \((\text{E}^{-1} \text{s}^{-1} \text{TeV}^{-1})\) of TeV gamma rays from MGRO J2031+41.

Table 2:

<table>
<thead>
<tr>
<th>(\sum \rho_{\text{FT}})</th>
<th>Energy (TeV)</th>
<th>(N_{\text{on}})</th>
<th>(< N_{\text{off}} >)</th>
<th>Significance</th>
<th>Differential Flux ((\text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{1.50} - 10^{1.75})</td>
<td>3.4</td>
<td>2499053</td>
<td>2493090</td>
<td>3.60(\sigma)</td>
<td>((1.21 \pm 0.34) \times 10^{-12})</td>
</tr>
<tr>
<td>(10^{1.75} - 10^{2.00})</td>
<td>5.7</td>
<td>797381</td>
<td>796088</td>
<td>1.38(\sigma)</td>
<td>((1.08 \pm 0.78) \times 10^{-13})</td>
</tr>
<tr>
<td>(10^{2.00} - 10^{2.33})</td>
<td>9.5</td>
<td>238588</td>
<td>237589</td>
<td>1.95(\sigma)</td>
<td>((3.22 \pm 1.65) \times 10^{-14})</td>
</tr>
<tr>
<td>(10^{2.33} - 10^{2.67})</td>
<td>18.3</td>
<td>37921</td>
<td>37448</td>
<td>2.33(\sigma)</td>
<td>((8.11 \pm 3.50) \times 10^{-15})</td>
</tr>
<tr>
<td>(10^{2.67} - 10^{3.00})</td>
<td>40.2</td>
<td>6720</td>
<td>6736</td>
<td>-0.19(\sigma)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Differential flux of TeV gamma rays from MGRO J2019+37 observed with the Milagro \[6\] and the Tibet III. The ARGO-YBJ reports upper limits \[7\].

Figure 4: Differential flux of TeV gamma rays from MGRO J2031+41. observed with the Milagro \[6\], the ARGO-YBJ \[7\] and the Tibet III.