Two years of observations of LS I +61°303 with MAGIC

N. Sidro1+, V. Bosch-Ramon2, J. Cortina1, T. Jogler3, J. M. Paredes2, M. A. Perez-Torres4, M. Ribó2, J. Rico1, D. F. Torres1,5, for the MAGIC collaboration.

1 Instituto de Física d’Altes Energies, Edifici Cn., E-08193 Bellaterra, Spain.
2 Universitat de Barcelona, E-08028 Barcelona, Spain
3 Max-Planck-Institut für Physik, D-80805 München, Germany
4 Instituto de Astrofísica de Andalucía IAA-CSIC
5 ICREA and Institut de Ciències de l’Espai, IEEC-CSIC, E-08193 Bellaterra, Spain
* Presenting author.

nsidro@ifae.es

Abstract: In the last two years, the MAGIC telescope has performed an observational campaign on the X-ray binary LS I +61°303. Observations during the first year covered 6 orbital cycles and resulted in the first detection of the source above ~200 GeV. LS I +61°303 was also found to be variable. The second campaign spanned 4 more orbital cycles, covering orbital phases which had not been explored before and allowing us to map variability. The total amount of ~150 hours of observation time allowed for a very detailed study of this source. In this talk we report on the results of these campaigns.

Introduction

The X-ray binary system LS I +61°303 is composed of a B0 main sequence star with a circumstellar disc, i.e. a Be star, located at a distance of ~2 kpc. A compact object of unknown nature (neutron star or black hole) is orbiting around it, in a highly eccentric (e = 0.72 ± 0.15) orbit [2].

LS I +61°303 was first observed in gamma rays by the COS-B experiment. Later more precise EGRET measurements showed hints of variability of the γ-ray flux [12].

The orbital period is 26.496 days. Periastron passage is at phase φ = 0.23 ± 0.02 [2].

Radio outbursts are observed every orbital cycle at phases varying between 0.45 and 0.95 with a 4.6-year modulation [5]; often a double-peak structure is visible.

X-ray outbursts, starting around phase 0.4 and lasting up to phase 0.6, have also been detected [6]. Orbital X-ray periodicity has also been found using RXTE/ASM data [10], which currently reveal a broad maximum covering phases 0.4 – 0.6. Similar results have recently been obtained at higher energies with INTEGRAL [7].

Although previously considered a microquasar [9], a recent VLBA high resolution radio imaging of the source showed no evidence for extended jet-like features [3], but rather an extended structure which evolves with the orbital period and may be related to the shock where the companion star and a pulsar winds interact (see [4] for a description of the model).

Observation and Analysis

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) is a telescope for very high energy (VHE, E ≥ 50 – 100 GeV) γ-ray observation exploiting the Imaging Air Cherenkov technique [8]. It is located on the Canary Island of La Palma (Spain) at, 28°45'30"N, 17°52'48"W and 2250 m above sea level.

LS I +61°303 was observed with MAGIC in the past two years. In a first campaign of observations, 54 hours were recorded between October
MAGIC OBSERVATIONS OF LS I +61°303

2005 and March 2006 [1]. During a second campaign 112 hours of observations were performed from September to December 2006.

Our measurements show that the VHE \(\gamma \)-ray emission from LS I +61°303 is variable. The integral \(\gamma \)-ray flux coming from the direction of LS I +61°303 in a day-by-day basis is presented in Figure 1. The maximum flux is detected around phase \(\Phi = 0.6 - 0.7 \).

The VHE spectra derived from both data samples between \(~\text{200 GeV} \text{ and } ~\text{5 TeV}\) are shown in Fig. 2. The reference red dotted line is for cycle I data (averaged for phases 0.4-0.7), fitted to a power law with spectral index \(2.6 \pm 0.2\). For cycle II, spectrum for phase 0.6-0.7 is presented in green points. The spectral slope obtained from the power law fit is in agreement with that of cycle I spectrum. No significant change in the spectral index is observed.

Conclusions

MAGIC has observed the X-ray binary LS I +61°303 in two consecutive years for 54 and 112 hours respectively. We briefly discuss the observational technique and analysis, derive a VHE \(\gamma \)-ray spectrum and a daily light curve for the two observational campaigns.

Further results will be presented at the conference, including a search for periodicity in the variable signal and the variability on short timescales.

Acknowledgments

We thank the IAC for the excellent working conditions at the Observatory del Roque los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN and the Spanish CI-CYT is gratefully acknowledged. This work was also supported by ETH Research Grant TH 34/04 3 and the Polish MNiI Grant 1P03D01028.

References

[1] J. Albert et al. Variable very high energy gamma-ray emission from the microquasar...
Figure 2: Differential energy spectrum of LS I +61°303 for energies between 200 GeV and 4 TeV and averaged for maximal flux orbital phases. The dashed line corresponds to the measured flux in cycle I [1]. The flux points correspond to cycle II.

