Ground-Level Enhancement of December 13, 2006 in muon hodoscopes data

D.A. Timashkov¹, Yu.V. Balabin², V.V. Borog¹, K.G. Kompaniets¹, A.A. Petrukhin¹, D.A. Room¹, E.V. Vashenyuk², V.V. Shutenko¹, I.I. Yashin¹

¹ Moscow Engineering Physics Institute, NEVOD Laboratory
² Polar Geophysical Institute, Apatity division
DATimashkov@mephi.ru

Abstract: A wide-aperture hodoscope URAGAN registered muon rate increase during GLE of December 13, 2006 at six sigma level. The time of maximum is earlier than in neutron monitors data. Abilities of muon hodoscopes allow obtain 2D-pictures of muon flux, and for the first time the spatial-angular dynamics of GLE event is measured. Due to that asymptotic viewing cone of the hodoscope appeared looking precisely along IMF, it was possible to trace in details the evolution of a short-lived and highly collimated relativistic particle bunch in the initial phase of event.

Introduction

In the middle of December, 2006 strong disturbances of geomagnetic conditions caused by influence of solar region AR10930 occurred. By means of satellites GOES11 and GOES12 [1] several powerful X-ray flairs have been registered. The flare of Dec 13 is of a special interest since it was accompanied by powerful proton event, which produced a sharp growth of cosmic ray flux in the near-Earth space and at ground level [2]. The neutron monitor network [3] registered the Ground-Level Enhancement event (GLE # 70).

In Figure 1 the increase of neutron rates of four neutron monitors with different threshold rigidities is presented. The difference in the increase effect was caused first of all by great anisotropy. Thus the greatest increase was registered at Oulu and Apatity stations. Less strong increase was observed at Moscow due to higher geomagnetic cutoff (2.4 GV). All these three stations were looking nearly along anisotropy axis [3]. Irkutsk neutron monitor registered the low increase effect and delayed onset of GLE (02:58 UT) because of unfavorable acceptance direction [3]. It is remarkable that no effect was observed on neutron monitors with higher cutoff rigidity (Baksan – 5.6 GV, Athens – 8.0 GV). That can specify the upper limit in a spectrum of solar cosmic rays in this flare.

Additional information about the event of December 13, 2006 can give muon flux measurements at the ground level. Cosmic ray muons keep direction of primary particle motion that allows study angular cosmic ray flux variations by means of large-area muon detectors with high angular resolution.

This paper is devoted to study of GLE of December 13, 2006 on data of muon detectors of NEVOD Laboratory (MEPhI, Moscow) [4]. The total muon rate variations and also real-time dynamics of spatial-angular picture of muon flux during GLE event are discussed.

Figure 1: The GLE of December 13, 2006 on a number of neutron monitors: Apatity, Oulu, Moscow, Irkutsk.
GLE EVENT OF DEC 13 IN MUON HODOSCOPE DATA

Muon hodoscopes

NEVOD Laboratory is situated in Moscow Engineering Physics Institute. Geographic coordinates are 37°40' East longitude, 55°39' North latitude. Altitude above sea level is 163 m. The geomagnetic cut-off for vertical direction equals 2.43 GV (IGRF). At present, in NEVOD Laboratory two unique coordinate detectors which allow register cosmic ray muons in wide regions of zenith angles and threshold energies are under operation.

The first in the world muon hodoscope TEMP [5] consists of two pairs of horizontal coordinate planes (X, Y) with sensitive area of 9 m^2. These pairs are vertically separated by 1 m. Each plane is assembled of narrow scintillator counters (2.5 cm×1 cm×300 cm) with PMT. Total number of counters is 512; angular resolution 1–2°. Data are continuously registered as intensity arrays with dimension 255×255 directional cells. Threshold muon energy is about 0.5 GeV.

The second multipurpose muon hodoscope URAGAN [6] has a modular structure. Single supermodule (SM) of the hodoscope includes eight planes interlaid with 5 cm foam plastic and composed of 320 streamer tubes (1 cm×1 cm×350 cm) with external strips (along and across streamer tubes) forming two-dimensional readout system. Total area of each SM is about 11.5 m^2, and it includes 4864 data channels. The data processing system allows reconstruct muon tracks in the online mode and register muon flux from the upper hemisphere as continuous sequence of 2D-pictures. The setup provides detection of particles in a wide range of zenith angles (from 0 to 80°) with angular accuracy about 0.7°. Threshold muon energy is about 0.2 GeV (for vertical direction). In 2006, two URAGAN supermodules (SM10 and SM11) were under operation.

Integral counting rate data

URAGAN supermodules detected an intensity growth starting from 02:54 UT (see Figure 2). Maximum enhancement was found at 02:59 UT for SM10 and at 03:01 UT for SM11 that is earlier than in neutron monitor data (03:06 UT). In 10-minute counting rate summarized over URAGAN supermodules maximum enhancement value equals to $0.61 \pm 0.09 \%$ and is above six-sigma level (Figure 3).

No muon flux increase was found in TEMP data (Figure 4). Red dashed lines show $\pm 3\sigma$ range. This fact can be explained by somewhat higher threshold energy for TEMP hodoscope (about 500 MeV) than for URAGAN, that puts more strong restriction on rigidities of primary protons.

Figure 2: One-minute normalized counting rate of separate supermodules.

Figure 3: Total ten-minute normalized counting rate from URAGAN supermodules.

Figure 4: Rate of muon hodoscope TEMP at night Dec 12–13, 2006.
Muon flux 2D-dynamics during GLE

Muon hodoscope URAGAN allows register muon flux as continuous sequence of one-minute snapshots, thus conducting the filming of upper hemisphere in “muon light”. On-line reconstruction gives values of both zenith and azimuth angles as projection angles θ_x, θ_y of muon track (in local coordinate system), on the basis of which the track is put in a corresponding cell of the angular matrix. In Fig. 5 the sequence of 2D-matrices with 4-minute step, obtained using sliding average over 5-minute intervals, is presented. Starting time of each averaging interval is indicated. Thin lines identify North-South and West-East directions. Colors show excess and deficit of muons from a certain direction (bright-red and deep-blue correspond to deviations exceeding 3.5 sigma).

From the figure it is clearly seen that muon hodoscope URAGAN fixed GLE in rather narrow angular interval near the vertical direction. Observed muon flux enhancement was short-lived (about 10 minutes).

Comparison with neutron monitor observations

In Figure 6 an asymptotic direction map is shown with calculated asymptotic cones of the mid-latitude neutron monitors with geomagnetic cutoff of 2-4 GV [7]. At the beginning of the event, these neutron monitors looking along a direction of IMF have registered a sharp short-term peak (Figure 7). As analysis performed in [3] shows, the effective rigidity range of solar protons responsible for the peak is within the limits of 5-10 GV. By our estimates, the muon increase on the URAGAN hodoscope was caused by solar protons with similar values of rigidity.

The blue ellipse in Figure 6 is the asymptotic projection of the muon increase angular cone in the hodoscope matrix. The area rounded by the ellipse included all calculated asymptotic directions of particles starting with different angles within the limits of red spot in Figure 5. The rigidity of primary protons was taken as 5 GV. So, the asymptotic arrival directions of particles forming the angular image on the hodoscope matrix is close to the direction of IMF and to calculated anisotropy axis of the relativistic solar proton flux registered by the neutron monitor network (see Figure 6). The angular dimensions of a narrow particle bunch causing the increase on URAGAN hodoscope is of the order of angular width (~30°) of the pitch angle distribution in the same particle bunch detected by the neutron monitors [3].

It is seen from Figure 6 that all asymptotic cones are intercepted at rigidities about 4-5 GV. The comparison with Moscow NM cone for different rigidities shows that in solar proton flux, at least during event maximum, the particles flux with rigidity up to 10 GV exceeded the background of galactic cosmic rays. Besides, the sharp profile of muon enhancement in URAGAN and of counting rate in neutron monitors with rigidities close to muon hodoscope (Fig. 7) evidences for a strong anisotropy of high-energy component of solar proton flux.
Discussion

Proton event of December 13, 2006 was detected not only by satellite detectors and neutron monitors at high and moderate geomagnetic latitudes, but also by ground-based muon hodoscope URAGAN. The detecting of a bunch was promoted by that the asymptotic acceptance cone of muon hodoscope appeared looking precisely along the IMF. The onset of increase is 02:54 UT and is four minutes later than the start of enhancement on neutron monitors (Apatity, Oulu, Moscow). But the moment of maximum in URAGAN data (03:00 UT) is earlier than in these monitors (03:06 UT). The muon peak is much sharper than the neutron one. The width of the peak is about 10 minutes. It is important that at the time of the event the asymptotic arrival direction of particles coming to URAGAN hodoscope from zenith was close to the IMF direction and correspondingly to the calculated anisotropy axis of relativistic solar proton flux. Thus one can conclude that URAGAN hodoscope registered the highly collimated short-lived bunch of relativistic solar protons [8].

Acknowledgments

The authors would like to thank all physicists providing neutron monitor data used for this work. The research is performed at the Experimental Complex NEVOD with the support of the Federal Agency of Education, Federal Agency for Science and Innovations and RFBR grants (06-02-08218-ofi and 06-02-17213-a). The work of Yu.V. Balabin and E.V. Vashenyuk is supported by RFBR grants 05-02-17143 and 07-02-01405a.

References

[3] E.V. Vashenyuk et al., This issue, paper ID 362.