Comparison of preshower characteristics at Auger South and North

P. HOMOLA¹, M. RISSE², R. ENGEL³, D. GÓRA¹, J. PĘKALA¹, B. WILCZYŃSKA¹, H. WILCZYŃSKI¹
¹H. Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
²University of Wuppertal, Department of Physics, Gausstr. 20, 42097 Wuppertal, Germany
³Forschungszentrum Karlsruhe, Institut für Kernphysik, 76021 Karlsruhe, Germany
⁴Universität Karlsruhe, Institut für Experimentelle Kernphysik, 76128 Karlsruhe, Germany
Piotr.Homola@ifj.edu.pl

Abstract: Due to geomagnetic cascading, the properties of air showers initiated by photons above 10^{19} eV depend strongly on the arrival direction and on the geographical location of the experimental site. This offers the possibility of a complementary search for such ultra-high energy photons with observatories located at sites with significantly different local geomagnetic field. In this paper we compare the characteristics of photon showers at the southern and northern sites of the Pierre Auger Observatory. The complementarity of the shower features seen by the two sites is demonstrated. We study how this complementarity can be used to search for ultra-high energy photons.

Introduction

Substantial fluxes of cosmic-ray photons at ultra-high energy (UHE), above 10^{19} eV, are predicted by non-acceleration (top-down) models of cosmic-ray origin (for example, see [2]). At a smaller level, UHE photons are also expected to be produced in acceleration (bottom-up) models [4]. So far, upper limits on the photon flux were set (see [15] and references therein). The large exposure expected to be collected during the next years, in particular by the Pierre Auger Observatory [12], will enormously increase the sensitivity for detecting UHE photons [13].

Contrary to the case of hadron primaries, UHE photons around 10^{20} eV can interact with the geomagnetic field before entering the atmosphere [10] producing a bunch of lower energy particles. This process is commonly called geomagnetic cascading or preshower and leads to a dramatic change of the air shower development for primary photons (see [7] and references therein). The probability of magnetic e^+e^- pair production (“photon conversion”) and, in case of conversion, the synchrotron emission by the produced electrons depend on the particle energy and on the transverse component of the local magnetic field [3, 6]. This implies the dependence of the expected properties of the photon-induced shower on the primary arrival direction within the local coordinate system and on the geographic location of the experiment [10].

In this work we study how the preshower characteristics affects the properties of air showers for the conditions of the southern part of the Auger Observatory (“Auger South”) situated in Malertue (Argentina) at 69.2° W, 35.2° S and its northern part (“Auger North”) planned in Colorado (USA) at 102.7° W, 37.7° N. The geomagnetic field vector differs significantly between these two sites: at Auger South, the magnetic field of $\sim 24.6 \mu{T}$ points upward to $\theta \sim 55^\circ$, $\phi \sim 87^\circ$ while at Auger North, the magnetic field of $\sim 52.5 \mu{T}$ points downward from $\theta \sim 25^\circ$, $\phi \sim 262^\circ$. It is also considered how the different properties of photon-showers at the two sites can be used to perform a complementary search for UHE photons.

While the study is performed for the specific case of the two Auger sites, the general findings hold for any two sites with sufficiently different local magnetic field conditions.

1. Azimuth is defined in this work counterclockwise from geographic East. For instance, $\phi = 0^\circ$ means East, $\phi = 90^\circ$ North etc.
Conversion of an UHE energy photon at Auger South and North

A key parameter to characterize the fate of an UHE photon in the Earth’s magnetic field is the conversion probability P_{conv}. Given the local differential probability of a photon to convert into an electron pair, P_{conv} results from an integration along the particle trajectory. Small values of P_{conv} indicate a large probability of the UHE photon to enter the atmosphere without conversion and to keep its original identity. In turn, UHE photons would almost surely undergo geomagnetic cascading for values of P_{conv} close to unity.

P_{conv} depends on the experimental site, the photon energy, and the direction of the particle trajectory in the local coordinate system of zenith θ and azimuth ϕ, $P_{\text{conv}} = f(\text{site, } E, \theta, \phi)$. Thus, for a chosen site and a fixed primary photon energy, sky maps within the local coordinate system $P_{\text{conv}} = f(\theta, \phi)$ can be produced to study the pattern of UHE photon conversion. As an example, in Figure 1 two such sky maps are shown for two different geographical locations, Auger South and Auger North, and for one primary energy of 100 EeV. One can see significant differences in P_{conv} between the two sites for a given direction in terms of local coordinates. As expected, small conversion probabilities are found for sky regions around the pointing direction of the local magnetic field vector.

It is clear from Fig. 1 that cuts on the local shower arrival direction can be introduced to select regions of the sky where P_{conv} is larger (or smaller) at one site compared to the other site. A possible photon signal could then show up with different signatures at the two sites for the same selection cuts.

Air showers initiated by converted and unconverted photons

It is well known that unconverted photon showers, contrary to converted, have a considerably delayed development due to the LPM effect [9, 11]. Additionally, event-by-event fluctuations can be extraordinarily large due to a positive correlation of the suppression of the cross-section with air density. To demonstrate how this effect can be seen at two different locations, detailed simulations were carried out with CONEX [14, 1], which reproduces well CORSIKA [5] results. All the primaries were simulated at energies of 10^{20} eV with two different local arrival directions and two different observation sites: Auger North and South. 1000 photon events per each combination of site and arrival direction were simulated, and hadron showers (simulated with QGSJET 01 model [8]) were added for comparison. The resulting distributions of depth of shower maximum X_{max} are shown in Figure 2. In the upper panel all the primaries arrived from geographic North at 45° zenith. For this particular direction the photon conversion probability is large at Auger North (> 99.9%) and small
There are other shower observables, especially from ground arrays, that were shown (or are expected) to differ between converted and unconverted photons. However, as discussed in Ref. [7], a study of X_{max} distributions provides us with most relevant information for investigating possible complementary features of both sites.

UHE photon scenarios and their observation at Auger South and North

The complementarity between the preshower characteristics at Auger North and South can be taken as an advantage when searching for the presence of the photon component in the cosmic-ray flux at highest energies. Photons can manifest themselves at Earth within different scenarios. One of such scenarios, a diffuse photon signal, is considered below as an example. The other possibilities, e.g. a signal from a source region or the absence of photons are discussed in Ref. [7].

An isotropic primary flux with the all-particle energy power low spectrum with index -2.84 is assumed. Such a spectrum is consistent with the first estimate from the Auger South Observatory [16]. We assume protons and photons as primaries and the input fraction of photons as a function of primary energy follows the results from a topological defect model in [4]. For each Auger site, we simulated 10^3 events above $\log(\frac{E}{\text{eV}}) = 19.6$ with zenith angles between $30^\circ - 75^\circ$ and random azimuth. We accounted for a detector resolution of 25 g cm^{-2} in X_{max} and 10% in primary energy.

In Figure 3 we show average X_{max} as a function of energy. We restricted the azimuth range in this plot to the local northern sky by requiring an azimuth between $30^\circ - 150^\circ$. In this region of the sky, photon conversion starts at Auger North at smaller energies than at Auger South. As expected, there are considerably fewer events with large X_{max} (e.g. exceeding 1000 g cm$^{-2}$) at Auger North, for the same overall cuts applied to the data at both sites. Additionally, the larger average X_{max} at Auger South is accompanied by sig-
Comparison of Preshower Characteristics

Figure 3: Average X_{max} vs. energy for the local northern sky (for definition see the text) at Auger North and at Auger South. For comparison, values corresponding to a pure proton flux are also shown using the model QGSJET 01 (dotted blue line).

Significantly increased shower fluctuations (for a reference plot see Ref. [7]). An observation of such different characteristics at Auger North and South would be an unambiguous confirmation of a photon signal detection.

The above conclusions are not changed for the cosmic ray spectrum with the GZK cut-off. For a discussion and a quantitative example of applying a simple cut-off to the power law energy spectrum the reader is referred to Ref. [7].

Conclusion

The difference of conversion probabilities is a convenient and effective parameter to estimate the complementarity between two sites for searching for UHE photons. Regarding the two sites of the Pierre Auger Observatory, Auger North and Auger South, significant differences in the preshower features of UHE photons exist. These differences in the preshower characteristics result in different rates of (un-)converted photons from the same (both in local and astronomical coordinates) regions of the sky. Air showers initiated by converted and unconverted photons can be well distinguished by current experiments. The main difference is related to the position of depth of shower maximum X_{max}, which is typically $\sim 200-300$ g cm$^{-2}$ smaller for converted photons.

For a variety of UHE photon flux scenarios (diffuse photon flux; photons from source regions; absence of photons), the different preshower characteristics at the experimental sites can be used for a complementary search for UHE photons. Most important, a possible detection of UHE photons at Auger South may be confirmed in an unambiguous way at Auger North by observing the well predictable change in the signal from UHE photon showers.

Acknowledgements

This work was partially supported by the Polish Ministry of Science and Higher Education under grants No. N202 090 31/0623 and PAP/218/2006 and in Germany by the DAAD under grant No. PPP 323. MR acknowledges support from the Alexander von Humboldt foundation.

References